Reactions of some Indolyl Alcohols and Indolyl-olefins with Arenesulphonyl Azides

By Gulam A. Bahadur, A. Sydney Bailey,* Gerard Costello, and Peter W. Scott, Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY

The reactions of 1,3-dimethylindol-2-ylmethanols with arenesulphonyl azides afford 2-arenesulphonylamino-1,3dimethylindoles as the major products, the side chain being lost, whilst hexahydro-5-methylcyclohept[b]indol-6-ol yields 2 -arenesulphonylimino-2'-hydroxy-1-methylindoline-3-spirocyclohexanes. From the reaction between 5-methyl-5,8,9,10-tetrahydrocyclohepta[b]indole and p-chlorobenzenesulphonyl azide three products have been isolated and shown to be 2-p-chlorophenylsulphonylimino-1-methylindoline-3-spirocyclohex-2'-ene, 6-p-chloro-phenylsulphonylimino-5,6,7,8,9,10-hexahydro-5-methylcyclohepta[b]indole and $\mathbf{2}^{\prime}$ - p-chlorophenylsulphonyl-aminomethylene-2- ρ-chlorophenylsulphonylimino-1-methylindoline-3-spirocyclopentane.

Although we have examined the reactions of arenesulphonyl azides with a wide range of indoles containing alkyl and aryl groups our examination of the reactions

(1)

(2)

Compound (3) was obtained by reduction of the known ${ }^{1} 2$-acetyl-1,3-dimethylindole. Treatment of 2 -acetyl-1,3-dimethylindole with methylmagnesium iodide yielded compound (4). It was impossible to purify this alcohol since on chromatography or just on standing at room temperature dehydration occurred. The

(6)

(8)

(7)

(9)
of substituted indoles has been limited to carbonyl derivatives, for example (1) ${ }^{1}$ and (2). ${ }^{2}$ This work has now been extended to alcohols and olefins of types (3)-(5) and (6) and (7). It was necessary to examine both types of compound since dehydration of the alcohols (3) and (4) to form olefins readily occurs.

(11)
(12)

primary alcohol (5) was produced by the reduction of methyl 1,3-dimethylindole-2-carboxylate; ${ }^{2}$ this alcohol

had been obtained previously ${ }^{3}$ but not characterised. 1,3-Dimethyl-2-vinylindole (6) was prepared from 1,2,3trimethylindole via the Mannich reaction. ${ }^{4}$ Chromatography of the mother-liquors obtained in the preparation of compound (4) afforded a 1% yield of (8), the selfcondensation product of 2 -acetyl-1,3-dimethylindole; compound (8) was obtained in very small yield by boiling 2 -acetyl-1,3-dimethylindole in xylene containing aluminium t-butoxide. The compound is assigned the trans configuration by analogy with the formation of trans-chalcones by this type of condensation. ${ }^{5}$ The two ' model' compounds (9) and (10) were prepared by the reaction of 2 -acetyl-1,3-dimethylindole with benzaldehyde and with 2 -formyl-3-methylindole.

In preliminary experiments a strong smell of acetaldehyde was noted when compound (3) was warmed with p-chlorobenzenesulphonyl azide $\left(\mathrm{CbsN}_{3}\right)$; therefore a mixture of the alcohol and azide was warmed gently in a stream of nitrogen. The gases were passed through Brady's reagent yielding acetaldehyde DNP. The major products of the reaction were the known ${ }^{3,6}$ mono- (12) (yield 75%) and di- (11) (yield 14%) adducts. A $\mathbf{3} \%$ yield of the imine ($\mathbf{1 5} ; \mathrm{Z}=\mathrm{Cbs}$) was also obtained. The structure of ($15 ; \mathrm{Z}=\mathrm{Cbs}$) was established by a comparison of its properties with the known ${ }^{3}$ compound ($15 ; \mathrm{Z}=\mathrm{Ts}$). Compound (12) probably arises via the intermediate (13) by the loss of acetaldehyde and (12) then reacts with more azide to form (11). The formation of (15) from (3) involves the loss of a carbon atom and we suggest that this occurs by loss of water from the alcohol to form small quantities of the olefin which then adds CbsN_{3} to yield (14), which loses diazomethane to form ($15 ; Z=\mathrm{Cbs}$) [cf. the reactions of the cyclic olefin (26)]. Loss of water after the addition of CbsN_{3} to (3) forming (13) could not lead to (15). Treatment of the tertiary alcohol (4) with CbsN_{3} afforded acetone and the adducts (11) (7\% yield) and (12) (59% yield). The reactions of the primary alcohol (5) were different from those of the secondary and tertiary alcohols. No

(16)
formaldehyde was detected in the gas evolved. The yield of the aminoindole (12) was only 11% and none of the $2: 1$ adduct (11) was obtained. The imine (15) (yield 4%) was found and also the aldehyde (16) (22%) which was not an impurity in the starting material. The main product was a gum, a mixture of CbsNH_{2} and an unstable material. Recrystallisation afforded CbsNH_{2} and compound (12). The n.m.r. spectrum of the crude mixture suggested that the unstable component was (17), formed by migration of the $\mathrm{CH}_{2} \mathrm{OH}$ group; (17) then breaks down to form (12) [cf. the formation ${ }^{7}$ of (12) from (18)]. The aldehyde (16) probably arises by the loss of CbsNH_{2} from the intermediate (19) [cf. the reaction ${ }^{3}$ of 1,2,3-trimethylindole which involves (20)
as an intermediate]. However the formation of (15) from (5) does not involve the loss of a carbon atom but a molecule of water and we suggest that formation of (15) involves a shift of the N -Cbs group as shown $[(21) \longrightarrow$ (22)]. Any reaction sequence involving the loss of water as the first step seems unlikely since an intermediate of type (23) would react with CbsN_{3} at the $\mathrm{N}-\mathrm{C}=\mathrm{CH}_{2}$ group with the loss of diazomethane. ${ }^{3}$

(23)

The reactions of the two olefins with CbsN_{3} was very complex. Dark polymeric tars were produced and neither p.l.c. nor column chromatography afforded any pure materials.

The reactions of a cyclic alcohol and of the corresponding olefin were also examined. Compounds (25; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) and (26; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) were selected since we know ${ }^{8}$ that N-methylhexahydrocyclohepta[b]indole reacts faster with azides than does N-methyl-

(24)

(26)

(25)

(27)
tetrahydrocarbazole; further, derivatives of 1-hydroxytetrahydrocarbazole readily form dihydrocarbazoles
which undergo disproportionation or polymerisation. ${ }^{9}$ Hexahydrocyclohept $[b]$ indol- 6 -one ${ }^{10}$ was methylated ${ }^{\mathbf{1 0}}$ forming the hexahydro-5-methylcyclohept $[b]$ indol- 6 -one ($24 ; \mathrm{R}=\mathrm{H}$). This ketone did not react with azides under a variety of conditions; reduction of the ketone afforded the corresponding alcohol (25; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$). Preliminary experiments showed that the alcohol did react with CbsN_{3} but complications arose since in chloroform solution in daylight the reaction (25) $\longrightarrow(26)$ rapidly occurred. Therefore all reactions involving (25) and (26) were done as far as possible in the dark.

Reaction of the alcohol (25; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) with CbsN_{3} afforded the spiro-alcohol (27; $\mathrm{Z}=\mathrm{Cbs}$) (yield 53%) (when the reaction was run in the presence of an anti-oxidant the yield was slightly improved). This structure was supported by its characteristic mass spectrum ${ }^{3,8}$. On carrying out the reaction in acetic anhydride solution small quantities of the spiro-olefin (29; $\mathrm{Z}=\mathrm{Cbs}$) were isolated. This is believed to arise via (26) rather than by dehydration of (27), since (27 ; $\mathrm{Z}=\mathrm{Cbs})$ melted without decomposition, was stable in chloroform solution in daylight, and dissolving (27; $Z=\mathrm{Cbs}$) in trifluoroacetic acid (TFA) afforded the

corresponding ester and not the olefin (29; $\mathrm{Z}=\mathrm{Cbs}$). Oxidation of (27; $Z=\mathrm{Cbs}$) afforded the corresponding ketone, confirming the presence of a CHOH group.

From the reaction between CbsN_{3} and the olefin (26; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) three products have been isolated, two of which were easily identified. The spiro-olefin (29; $\mathrm{Z}=\mathrm{Cbs}$) [formed via (28)] had the expected i.r. and u.v. spectra but the n.m.r. spectrum of the compound [and that of $(29 ; Z=p$-nitrophenylsulphonyl)] showed unusual features. For the p-nitro-derivative, the multiplet at $\tau 3.8$ was assigned to $\mathrm{C}\left(3^{\prime}\right) \mathrm{H}$, the doublet ($J 10 \mathrm{~Hz}$) for $\mathrm{C}\left(2^{\prime}\right) \mathrm{H}$ appearing at the ' normal ' olefinic CH position. Dreiding models indicate that the favoured conformation is as shown in the Figure; any other half-chair arrangements bring the oxygen atoms of the SO_{2} group into contact with the H atoms of the cyclohexene ring. This structure assumes that the $\mathrm{C}=\mathrm{N}-\mathrm{SO}_{2} \mathrm{Argroup}$ is anti to the indole N-methyl group. ${ }^{3,11}$ In this conformation the $\mathrm{C}\left(3^{\prime}\right) \mathrm{H}$ atom and one of the H atoms on $\mathrm{C}\left(6^{\prime}\right)$ are very close to the SO_{2} group. Decoupling experiments gave the assignments indicated in the Figure. The ${ }^{13} \mathrm{C}$ spectrum showed the presence of three CH_{2} groups and one quaternary aliphatic C (53.8 p.p.m.). The signals of the two vinylic carbon atoms were in the same region as the eight aromatic (CH) signals. The olefin was characterised as the epoxide (30); bromination afforded the tribromo-derivative (31).

Under the same conditions the 'model' compound (32; $\mathrm{R}=\mathrm{H}$) gave (32; $\mathrm{R}=\mathrm{Br}$) [cf. the bromination of (33; $\mathrm{R}=\mathrm{H}$) giving (33 ; $\mathrm{R}=\mathrm{Br}$) and of oxindole derivatives ${ }^{12}$]. The second product obtained from

Figure Perspective views of compound (29)
(26; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) was the imine (35; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$); the u.v. spectrum of the material showed that the $\mathrm{C}=\mathrm{NCbs}$ group was conjugated with the indole nucleus. Since

(30)

(32)

(34)

(31)

(33)

(36)
the compound was not the known imine $(\mathbf{3 6})^{8}$ we assigned the structure ($35 ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$); this was confirmed by hydrolysis $\left[\left(35 ; \mathrm{R}^{\mathbf{1}}=\mathrm{R}^{\mathbf{2}}=\mathrm{H}\right) \longrightarrow(24 ; \mathrm{R}=\mathrm{H})\right]$.

We assume that (35) arises via (34; $\mathrm{R}=\mathrm{H}$) by a proton shift (route a).

(37)

(38)

(40)

(41)

The third product was a $1: 2$ adduct which contained NHCbs and $\mathrm{C}=\mathrm{NCbs}$ groups (i.r.); the u.v. and mass spectra indicated that the compound was not a quinoline derivative based on structures (37) and (38). ${ }^{3,13}$ The n.m.r. spectrum contained a signal ($\tau 3.65$, d, $J 10 \mathrm{~Hz}$, $\mathrm{NH})$ coupled to a single olefinic proton $(4.25, \mathrm{~d}, \mathrm{~J} 10$ Hz) ; on addition of $\mathrm{D}_{2} \mathrm{O}$ the signal at 4.25 collapsed to a singlet. A split NH signal has rarely been encountered in the course of this azide-indole work. To accommodate these facts structure ($39 ; \mathrm{R}=\mathrm{H}$) was considered. This structure does not explain why the $=\mathrm{CH}$ group shows no coupling to the neighbouring CH_{2} group; the magnitude of the $\mathrm{HN}-\mathrm{C}=\mathrm{CH}$ coupling constant is much larger than those reported for an 'allylic ' system. ${ }^{14}$ Further, all compounds of this general type encountered in these researches have been of the 'imine' (40) type [e.g. (35), (36), (38)]. However in compounds (35) and (36) the $\mathrm{C}=\mathrm{N}$ group is conjugated with the indole nucleus and in structures of type (38) the ' meta' bridging and the N-methyl group may favour the $\mathrm{C}=\mathrm{N}$ structure. Indeed, N-acyl derivatives of vinylamines prefer the enamine to the imine form. ${ }^{15}$ A structure of type (39) would arise by the addition of a further molecule of azide to either (29) or (35), but these were shown not to be intermediates in the formation of the $1: 2$ adduct. This would imply that a second molecule of CbsN_{3} had added to (34) before (34) had lost nitrogen. Further information was sought by deuterium labelling. The deuteriated ketone ($24 ; \mathrm{R}=\mathrm{D}$) was reduced to (25; $\mathrm{R}^{1}=\mathrm{D}, \mathrm{R}^{2}=\mathrm{H}$) and dehydration afforded (26; $\mathrm{R}^{1}=\mathrm{D}, \mathrm{R}^{2}=\mathrm{H}$). This olefin reacted with CbsN_{3} to give a mixture of the imine ($35 ; \mathrm{R}^{1}=\mathrm{D}, \mathrm{R}^{2}=\mathrm{H}$) [via (34), route $\mathrm{a}, \mathrm{R}=\mathrm{H}$] and the $1: 2$ adduct. This material did not contain deuterium and could not be
(39; $\mathrm{R}=\mathrm{D}$). The adduct was treated with MeOD to show that exchange had not occurred during isolation. Reduction of the ketone ($24 ; \mathrm{R}=\mathrm{H}$) with LiAlD_{4} followed by dehydration afforded the isomeric olefin (26; $\left.\quad \mathrm{R}^{\mathbf{1}}=\mathrm{H}, \quad \mathrm{R}^{2}=\mathrm{D}\right)$. Treatment of this olefin afforded the imine ($35 ; \mathrm{R}^{1}=\mathrm{D}, \mathrm{R}^{2}=\mathrm{H}$) by a D shift in $(34 ; \mathrm{R}=\mathrm{D})$ and the $1: 2$ adduct which now contained a D atom. If the structure involves a six-membered ring this implies an 'abnormal' addition of CbsN_{3} to give (42), loss of nitrogen and further reaction giving

(42)

(41)
(41; $R=D$). A second type of structure (44) may be formed from (34) by route b involving $C(2)$ of the indole nucleus. Vinyl groups are known ${ }^{16}$ to undergo such a type of migration and anchimeric assistance by the NMe group (43) may occur (ref. 12, p. 109). This would

lead to a type of ring-contraction so far unobserved in this series. Attack of a second molecule of azide on (44) followed by ring-contraction then leads to structure (45) for the 1:2 adduct. This structure allows an explanation of the magnitude of the $\mathrm{NH}-\mathrm{CH}=$ coupling for $(45 ; \mathrm{R}=\mathrm{H})$ and also of the retention of deuterium when (26; $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{D}$) reacts with CbsN_{3} forming ($45 ; \mathrm{R}=\mathrm{D}$) via (43 and $44 ; \mathrm{R}=\mathrm{D}$). We hoped to distinguish between the three structures [(39), (41), (45)] by X-ray crystallography but failed to obtain suitable crystals. Attempted degradations (see Experimental section) gave amorphous materials, but methylation with $\mathrm{Me}_{2} \mathrm{SO}_{4}-\mathrm{NaOH}$ afforded an N-methyl derivative in which the $\mathrm{C}=\mathrm{NCbs}$ group had been hydrolysed. This
compound ($\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$) gave crystals suitable for X-ray crystallography and a structural determination ${ }^{17}$ has shown that the material has structure (46), proving that the $1: 2$ adduct is the ring-contracted material (45; $\mathrm{R}=\mathrm{H}$).

(46)

(47)

During this work we attempted the preparation of 3,4-dihydrocarbazol-1 $(2 H)$-one (47 ; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) by the periodate oxidation of tetrahydrocarbazole. ${ }^{18,19}$ At $0{ }^{\circ} \mathrm{C}$ the desired compound was obtained but when the reaction mixture was kept at room temperature overnight the 6 -iodo-compound ($47 ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{I}$) was obtained. This structure followed from its synthesis starting with p-iodoaniline. Compound (47; $\mathrm{R}^{\mathbf{1}}=$ $\mathrm{R}^{2}=\mathrm{H}$) is not attacked by iodine in HOAc nor by a mixture of periodic acid and potassium iodide. However, treatment of (47; $\mathrm{R}^{\mathbf{1}}=\mathrm{R}^{\mathbf{2}}=\mathrm{H}$) with a mixture of periodic acid and iodine yields (47 ; $\mathrm{R}^{\mathbf{1}}=\mathrm{H}, \mathrm{R}^{\mathbf{2}}=\mathrm{I}$) showing that traces of iodine formed during the periodic acid oxidation of the hydrocarbazole are responsible for the iodination.

EXPERIMENTAL

General details and instruments used have been reported. ${ }^{20}$ U.v. spectra were determined for solutions in ethanol and n.m.r. spectra for solutions in CDCl_{3} unless otherwise stated; i.r. spectra were recorded for Nujol mulls.

Starting Materials.-2-Acetyl-1,3-dimethylindole was reduced $\left(\mathrm{LiAlH}_{4}\right)$ forming 1-(1,3-dimethylindol-2-yl)ethanol (3) (95%), b.p. $100-110^{\circ}$ at 0.1 mmHg , rods, m.p. $50-52^{\circ}$ (from cyclohexane) (Found: C, 76.3; H, 7.6; N, 7.5. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$ requires C, 76.2; $\mathrm{H}, 7.9 ; \mathrm{N}, 7.4 \%$); $\lambda_{\text {max. }} 230$, 275 sh , and $298 \mathrm{~nm}\left(\varepsilon 30500,6000\right.$, and 6500); $\nu_{\text {max }}$. $\left(\mathrm{CHCl}_{3}\right) 1612$ and $3610 \mathrm{~cm}^{-1}$; $\tau 2.45-2.65(1 \mathrm{H}, \mathrm{m})$, $2.75-3.2(3 \mathrm{H}, \mathrm{m}), 4.95(1 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 6.43(3 \mathrm{H}, \mathrm{s})$, $7.50 \mathrm{br}\left(\mathrm{l} \mathrm{H}, \mathrm{s}\right.$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.80(3 \mathrm{H}, \mathrm{s})$, and $8.57(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}) ; m / e 189\left(M^{+}, 97 \%\right), 174(100)$, 172 (44), 146 (35), and 144 (32). Treatment of 2-acetyl-1,3-dimethyl-2-indole with methylmagnesium iodide $\left(\mathrm{NH}_{4} \mathrm{Cl}\right.$ work-up) afforded 2-(1,3-dimethylindol-2-yl)propan-2-ol (4); $\nu_{\max } 3315 \mathrm{~cm}^{-1} ; \tau 2.4-3.0(4 \mathrm{H}, \mathrm{m}), 6.13(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, $7.66[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(3) \mathrm{Me}], 8.08$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, and $8.32\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$. All attempts to purify the alcohol afforded the olefin. P.l.c. $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc}\right.$ in benzene) of the residue from the Grignard reaction afforded trans-1,3-bis-(1,3-dimethylindol-2-yl)but-2-en-1-one (8) (10 mg) ; $\lambda_{\text {max }} 226$ and $328 \mathrm{~nm}\left(\varepsilon 40900\right.$ and 12900); $\nu_{\text {max. }}$ $\left(\mathrm{CHCl}_{3}\right) 1220,1470,1623$, and $1650 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CCl}_{4}\right) 2.4-$ $3.2(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ and $\mathrm{HC}=), 6.37(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.44(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe}), 7.37[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(3) \mathrm{Me}], 7.76\left(3 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\right.$ $\mathrm{CH})$, and 7.83 [$3 \mathrm{H}, \mathrm{s}, \mathrm{C}(3) \mathrm{Me}]$; $m / e 356\left(M^{+}, 100 \%\right), 341$ (97), 212 (16), 184 (34), 172 (32), and 168 (40). 2-Acetyl-l,3-dimethylindole (1.87 g) was boiled (4 h , stirred) in xylene (40 ml) with aluminium t-butoxide (1.35 g). Water $(0.4 \mathrm{ml})$ was then added to the cold solution. After 60 h
the solid was filtered off, the solvent evaporated off, and the residue extracted with pentane. P.l.c. of the insoluble material afforded compound (8) (50 mg). 2-Acetyl-1,3-dimethylindole was condensed with benzaldehyde (EtOH -dil. NaOH), forming 1-(1,3-dimethylindol-2-yl)-3-phenylprop-2-en-1-one (9) (60%) as yellow prisms, m.p. $66-68^{\circ}$ (from EtOH) (Found: C, 82.7; H, 6.2; N, 5.2. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 82.9 ; \mathrm{H}, 6.2 ; \mathrm{N}, 5.1 \%$); $\lambda_{\max }$ 225, $285 \mathrm{sh}, 315 \mathrm{sh}$, and 340 nm ($\varepsilon 29500,15000,19500$, and $20100)$; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1580$, 1595,1630 , and $1650 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CCl}_{4}\right) 2.5-3.1(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ and $\mathrm{CH}=\mathrm{CH}), 6.15(3 \mathrm{H}, \mathrm{s}$, NMe), and 7.46 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$); $m / e 275\left(M^{+}, 100 \%\right), 274$ (23), 198 (44), and 184 (32). A similar reaction between 2-acetyl-1,3-dimethylindole and 3 -methylindole- 2 -carbaldehyde gave 1-(1,3-dimethylindol-2-yl)-3-(3-methylindol-$2-y l)$ prop-2-en-1-one (10) (yield 20%) as orange needles, m.p. 184° (from EtOH) (Found: C, 80.6; H, 6.0; N, 8.2. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 80.5 ; \mathrm{H}, 6.0 ; \mathrm{N}, 8.5 \%\right)$; $\lambda_{\text {max }}$ 268 and $435 \mathrm{~nm}\left(\varepsilon 12200\right.$ and 31000); $\nu_{\max .}\left(\mathrm{CHCl}_{3}\right)$ 1575,1640 , and $3480 \mathrm{~cm}^{-1}$; $\tau 2.16 \mathrm{br}(1 \mathrm{H}, \mathrm{s}$, exchanged with $\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}$), $2.13(1 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}, \mathrm{CH}=), 2.30-3.05$ $(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ and $=\mathrm{CH}), 6.20(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 7.49(3 \mathrm{H}, \mathrm{s}$, CMe), and $7.62(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$; $m / e 328\left(M^{+}, 100 \%\right), 187$ (50), 172 (50), and 144 (100). Methyl 1,3-dimethylindole-2-carboxylate was reduced $\left(\mathrm{LiAlH}_{4}\right)$ forming 1,3 -dimethyl-2hydroxymethylindole (5) as prisms (from cyclohexane), m.p. 119-121 ${ }^{\circ}$ (lit., ${ }^{3}$ m.p. 117-118 ${ }^{\circ}$); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3420$ and $3608 \mathrm{~cm}^{-1}$; $\tau 2.4-2.6(1 \mathrm{H}, \mathrm{m}), 2.7-3.05(3 \mathrm{H}, \mathrm{m})$, $5.31(2 \mathrm{H}, \mathrm{s}), 6.34(3 \mathrm{H}, \mathrm{s}), 7.72(3 \mathrm{H}, \mathrm{s})$, and $8.38(1 \mathrm{H}, \mathrm{s}$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$; $m / e 175\left(M^{+}, 95 \%\right)$, 174 (21), 158 (100), and 144 (29). 1,3-Dimethyl-2-vinylindole (6), prepared from 1,2,3-trimethylindole, ${ }^{4}$ had b.p. $110-120^{\circ}$ at $1 \mathrm{mmHg}, \mathrm{m} . \mathrm{p} .13-20^{\circ}$ (lit., ${ }^{4} 10-19^{\circ}$); $\lambda_{\text {max. }} 235$ and 305 $305 \mathrm{~nm}\left(\varepsilon 26000\right.$ and 16300); $v_{\text {max. }} 1472$ and $1627 \mathrm{~cm}^{-1}$; $\tau 2.4-2.65(1 \mathrm{H}, \mathrm{m}), 2.75-3.1(3 \mathrm{H}, \mathrm{m}), 3.33\left(1 \mathrm{H}, \mathrm{q}, J_{\mathrm{H} \gamma \mathrm{H}_{\alpha}}\right.$ $\left.18 \mathrm{~Hz}, J_{\mathrm{H} \gamma \mathrm{H} \beta} 11 \mathrm{~Hz}, \mathrm{H}_{\gamma}\right), 4.51\left(1 \mathrm{H}, \mathrm{q}, J_{\mathrm{H}_{\alpha} \mathrm{B} \gamma} 18 \mathrm{~Hz}, \mathrm{H}_{\alpha}\right)$, $4.70\left(1 \mathrm{H}, \mathrm{q}, J_{\mathrm{B} \beta \mathrm{H} \gamma} 1 \mathrm{llHz} J_{\mathrm{H} \beta \mathrm{H}_{\alpha}} \mathrm{lHz}, \mathrm{H}_{\beta}\right), 6.50(3 \mathrm{H}, \mathrm{s})$, and $7.65(3 \mathrm{H}, \mathrm{s})$; $m / e 171\left(M^{+}, 100 \%\right), 170(79), 156(9)$, 154 (17), and 144 (35). Distillation of the alcohol (4) afforded 2-(1,3-dimethylindol-2-yl)propene (7), b.p. 90° at 0.1 mmHg (Found: $\mathrm{C}, 84.1 ; \mathrm{H}, 8.0 ; \mathrm{N}, 7.5 . \quad \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}$ requires C, $84.3 ; \mathrm{H}, 8.1 ; \mathrm{N}, 7.6 \%$) ; $\lambda_{\max } 229$ and $292 \mathrm{~nm}(\varepsilon 30000$ and 9300); $\nu_{\text {max. }} 1478$ and $1640 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CCl}_{4}\right) 2.55-3.25$ $(4 \mathrm{H}, \mathrm{m}), 4.58\left(1 \mathrm{H}, \mathrm{q}, \mathrm{H}_{\alpha}\right), 5.0\left(1 \mathrm{H}, \mathrm{q}, \mathrm{H}_{\beta}\right), 6.50(3 \mathrm{H}, \mathrm{s})$, $7.78(3 \mathrm{H}, \mathrm{s})$, and $7.96\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$; calc. τ values ${ }^{21}$ $\mathrm{H}_{\alpha} 4.64$ and $\mathrm{H}_{\beta} 5.08$; decoupling experiments gave the following values, $J_{\mathrm{H}_{\alpha} \mathrm{H} \beta} 2.5 \mathrm{~Hz}, J_{\mathrm{H}_{\alpha} \mathrm{CMe}} 1.1$, and $J_{\mathrm{H} \beta \text { CMe }} 0.7$ $\mathrm{Hz} ; m / e 185$ ($M^{+}, 100 \%$), 184 (50), 170 (15), and 144 (30).

Reaction of Compounds (3) and (4) with p-Chlorobenzenesulphonyl Azide $\left(\mathrm{CbsN}_{3}\right)$.-A mixture of the indole (3) $(0.95 \mathrm{~g})$ and the azide (2.2 g) was heated $\left(70{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}\right)$ whilst a stream of nitrogen was passed over the melt and into Brady's reagent affording acetaldehyde DNP (m.p., t.l.c.). Methanol (5 ml) was added to the melt and after 24 h at $0^{\circ} \mathrm{C}$ compound (12) (0.37 g) was collected. Chromatography ($\mathrm{SiO}_{2} ; \mathrm{CHCl}_{3}$) of the residue afforded CbsN_{3} (l g); 2-p-chlorophenylsulphonyliminomethyl)-1,3-dimethylindole ($15 ; \mathrm{Z}=\mathrm{Cbs}$) $(50 \mathrm{mg})$ as yellow prisms $\left(\mathrm{CHCl}_{3}-\right.$ MeOH), m.p. $170-171^{\circ}$ (Found: C, 58.7; H, 4.5; N, 7.8. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 58.9 ; \mathrm{H}, 4.3 ; \mathrm{N}, 8.1 \%$); $\lambda_{\max }$ $225,255 \mathrm{sh}$, and 350 nm ($\varepsilon 40300,25900$, and 21800); $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1160$ and $1580 \mathrm{~cm}^{-1}$; $\tau 0.80(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$, $2.05(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.49(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.22-3.0(4 \mathrm{H}$, $\mathrm{m})$, $5.98(3 \mathrm{H}, \mathrm{s})$, and $7.39(3 \mathrm{H}, \mathrm{s})$; $m / e 346\left(M^{+}, 9 \%\right)$, 171 (M - Cbs, 100), 170 (8), and 144 (15). Further
elution afforded more (12) (1.15 g) and finally compound (11) $(0.37 \mathrm{~g})$. A mixture of the alcohol (4) (1.6 g), $\mathrm{CbsN}_{3}-$ $(1.8 \mathrm{~g})$, and EtOAc (2 ml) was heated $\left(50^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$ in a stream of nitrogen, the effluant affording acetone DNP (t.l.c. and m.p.). Chromatography of the reaction mixture afforded the olefin (7) (0.23 g), $\mathrm{CbsN}_{3}(0.1 \mathrm{~g}), 2$-acetyl1,3 -dimethylindole (0.12 g) (12) (1.55 g), and (11) (0.3 g).

Reaction of 1,3-Dimethyl-2-hydroxymethylindole (5) with CbsN_{3}.-A solution of the alcohol (0.45 g) in EtOAc (20 ml) containing $\mathrm{CbsN}_{3}(0.55 \mathrm{~g})$ was heated $\left(50{ }^{\circ} \mathrm{C}, 50 \mathrm{~h}\right)$ in a stream of nitrogen. Chromatography afforded 1,3 -dime-thylindole-2-carbaldehyde (0.1 g), the imine ($15 ; \mathrm{Z}=\mathrm{Cbs}$) $(0.03 \mathrm{~g})$, (12) (0.1 g), and a yellow gum (0.4 g). T.l.c. $\left(\mathrm{SiO}_{2} ; \mathrm{CHCl}_{3}\right)$ of this material indicated traces of (12), and of CbsNH_{2}; the major component had $R_{\mathrm{F}} 0.05$. Recrystallisation of the gum from benzene afforded CbsNH_{2} $(0.08 \mathrm{~g})$. P.l.c. of the benzene residues gave the indole (12) but no sign of the material of $R_{F} 0.05$. The n.m.r. spectrum of the crude material contained the following signals (omitting those due to CbsNH_{2}): $\tau 2.0-3.15(8 \mathrm{H}, \mathrm{m})$, $5.28 \mathrm{br}[1 \mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{CHOH}], 6.02 \mathrm{br}[1 \mathrm{H}, \mathrm{d}, J 11$ $\mathrm{Hz}, \mathrm{C}(3) \mathrm{CH}-\mathrm{OH}], 6.65$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 7.30 br [$1 \mathrm{H}, \mathrm{s}$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right]$, and $8.34(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$; $\nu_{\text {max. }} 1560$ $(\mathrm{C}=\mathrm{N})$ and $3460(\mathrm{OH}) \mathrm{cm}^{-1}$.

The olefins (6) and (7) were treated with CbsN_{3} in CCl_{4} and in DMSO under a variety of conditions. In all cases darkcoloured tars were obtained; t.l.c. of these showed large numbers of components. P.l.c. and column chromatography failed to give crystalline material.

5 -Methyl-5,8,9,10-tetrahydrocyclohept $[\mathrm{b}]$ indole ($26 ; \mathrm{R}^{1}=\mathrm{R}^{2}$ $=\mathrm{H}$).-2-Hydroxymethylenecycloheptanone ${ }^{22}$ was coupled with benzenediazonium chloride ${ }^{10}$ and the resulting phenylhydrazone (30 g) cyclised in boiling formic acid $(80 \%, 200 \mathrm{ml}, \mathrm{l} \mathrm{h})$. Water (100 ml) was then added and the product recrystallised $\left[25 \mathrm{~g}, \mathrm{~m} . \mathrm{p} .146-147^{\circ}\right.$ (from $\mathrm{HOAc})$: lit., ${ }^{10}$ 145-147 ${ }^{\circ}$. Methylation $\left(\mathrm{Me}_{2} \mathrm{SO}_{4}-\mathrm{KOH}-\right.$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}_{2} \mathrm{CO}$) afforded (24; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$), m.p. 65- 66° (lit. ${ }^{10} 64.5-65.5^{\circ}$). Reduction of the ketone (20 g) $\left(\mathrm{LiAlH}_{4}, \quad \mathrm{Et}_{2} \mathrm{O}\right.$, room temp.) afforded $5,6,7,8,9,10$-hexa-hydro-5-methylcyclohept [b]indol-6-ol (25; $\quad \mathrm{R}^{\mathbf{1}}=\mathrm{R}^{2}=\mathrm{H}$) as needles ($\mathbf{1 7 . 6} \mathrm{g}$), m.p. $92-93^{\circ}$ (from benzene-light petroleum) (Found: C, $78.3 ; \mathrm{H}, 8.0 ; \mathrm{N}, 6.6 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 78.2 ; \mathrm{H}, 7.9 ; \mathrm{N}, 6.5 \%$) ; $\lambda_{\text {max. }} 207,229,282 \mathrm{sh}, 290$, and $294 \mathrm{~nm}(\varepsilon 31500,55100,9400,9800$, and 9700$)$; $\nu_{\max }$. $3310 \mathrm{~cm}^{-1}$; $\tau 2.4-3.1(4 \mathrm{H}, \mathrm{m}), 4.8-5.0(1 \mathrm{H}, \mathrm{m}), 6.29$ $(3 \mathrm{H}, \mathrm{s}), 7.0-7.3(2 \mathrm{H}, \mathrm{m})$, and $7.8-8.6(7 \mathrm{H}, \mathrm{m}$, one proton exchanged with $\mathrm{D}_{2} \mathrm{O}$); $m / e 215\left(M^{+}, 100 \%\right)$, $198\left(60, m^{*}\right.$ 182.4), 197 (48), 171 (41, $m^{*} 136.0$), 158 (39), and 144 (51). A solution of the alcohol (10 g) in $\mathrm{CHCl}_{3}(300 \mathrm{ml})$ was kept in daylight for 24 h . Chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{CHCl}_{3}\right)$ gave the olefin. 5-Methyl-5,8,9,10-tetrahydrocyclohept $[\mathrm{b}]$ indole (26; $\left.\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right)(8 \mathrm{~g})$ formed plates, m.p. $36-38^{\circ}$ (from EtOH) (Found: C, 84.9; H, 7.8; N, 7.1. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}$ requires $\mathrm{C}, 85.3 ; \mathrm{H}, 7.6 ; \mathrm{N}, 7.1 \%$); $\lambda_{\text {max. }} 207,231,301 \mathrm{sh}$, and 308 $\mathrm{nm}(\varepsilon 17300,24500,12100$ and 12300$)$; $\nu_{\text {max }} 1635 \mathrm{~cm}^{-1}$; $\tau 2.5-3.0(4 \mathrm{H}, \mathrm{m}), 3.55 \mathrm{br}(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 3.9-4.2(1 \mathrm{H}$, $\mathrm{m}), 6.35(3 \mathrm{H}, \mathrm{s}), 6.98(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 7.45-7.7(2 \mathrm{H}, \mathrm{m})$, and $7.85-8.15(2 \mathrm{H}, \mathrm{m})$; $m / e 197\left(M^{+}, 100 \%\right), 196(83)$, 182 (34), 168 (23), and 167 (32). The ketone ($24 ; \mathrm{R}=\mathrm{H}$) $(8 \mathrm{~g})$ in 1,2-dimethoxyethane (50 ml) was boiled (30 min) with $\mathrm{D}_{2} \mathrm{O}(15 \mathrm{ml})$ containing NaOD (from $\mathrm{Na}, 1 \mathrm{~g}$). The mixture was diluted with water, the partially deuteriated material isolated, and the deuteriation repeated $(5 \mathrm{~h}$ reflux) ; the product showed $\tau 2.45(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.7-$ $3.2(3 \mathrm{H}, \mathrm{m}), 6.00(3 \mathrm{H}, \mathrm{s}), 6.95 \mathrm{br}(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 8.0-8.3$
$(4 \mathrm{H}, \mathrm{m})$. The signal at $\tau 7.32\left(\mathrm{CO} . \mathrm{CH}_{2}\right)$ in the starting material was absent. 7,7-[$\left.{ }^{2} \mathrm{H}_{2}\right]-7,8,9,10-$ Tetrahydro-5methylcyclohept $[b]$ indol- $6(5 H)$-one ($24 ; \mathrm{R}=\mathrm{D}$) (5 g) was reduced and dehydrated forming $7-\left[{ }^{2} \mathrm{H}\right]-5,8,9,10$-tetrahydrocyclohept $[b]$ indole ($26 ; \mathrm{R}^{1}=\mathrm{D}, \mathrm{R}^{2}=\mathrm{H}$) ; the n.m.r. spectrum included $\tau 3.65[1 \mathrm{H}, \mathrm{d}, J 1.3 \mathrm{~Hz}, \mathrm{C}(6) \mathrm{H}]$ but the signal at $\tau 3.9-4.2[\mathrm{C}(7) \mathrm{H}]$ was absent; on irradiation at $\tau 7.52$ the doublet at 3.65 collapsed to a singlet. Reduction of the ketone ($24 ; \mathrm{R}=\mathrm{H}$) with LiAlD_{4} gave the alcohol (25; $\quad \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{D}$) and dehydration yielded 6-[$\left.{ }^{2} \mathrm{H}\right]$ -$5,8,9,10$-tetrahydrocyclohept[b]indole $\left(26 ; \quad R^{1}=H, R^{2}=\right.$ D); the signal at $\tau 3.65[\mathrm{C}(6) \mathrm{H}]$ was absent.

2-p-Chlorophenylsulphonylimino-2'-hydroxy-1-methylin-doline-3-spirocyclohexane (27; $\mathrm{Z}=\mathrm{Cbs}$).-(a) A solution of ($25 ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) (l g) in $\mathrm{CCl}_{4}(4 \mathrm{ml})$ containing $\mathrm{CbsN}_{3}(2.2 \mathrm{~g})$ was kept at room temperature for 2 weeks and the solid $(0.4 \mathrm{~g})$ collected. The mother-liquors contained only polymeric material and Cbs_{3}. (b) The alcohol $(1.0 \mathrm{~g})$ was dissolved in dry DMSO (4 ml) containing CbsN_{3} (1.02 g) and 1 crystal of 2,6 -di-isopropylphenol was added. After 10 days water was added and the mixture extracted $(3 \times 30 \mathrm{ml})$ with benzene. The extracts were washed with water, dried, and the solvent removed. Acetonitrile (5 ml) was added to the residue and the solid (0.8 g) collected; concentration of the mother-liquor gave further material $(0.36 \mathrm{~g})$ and chromatography of the residue yielded the olefin ($28 ; \mathrm{Z}=\mathrm{Cbs}$) $(23 \mathrm{mg})$. In the absence of di-isopropylphenol the yield decreased to 53%. The alcohol ($27 ; \mathrm{Z}=\mathrm{Cbs}$) formed prisms from MeCN, m.p. 171-172 ${ }^{\circ}$, which contained MeCN of crystallisation which was not removed upon drying (n.m.r.) (Found: C, 59.6; H, 5.6; Cl, 8.7; N, 8.8; S, 8.0. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, $59.3 ; \mathrm{H}, 5.2$; $\mathrm{Cl}, 8.7$; $\mathrm{N}, 6.9 ; \mathrm{S}, 7.9 . \quad \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{CH}_{3} \mathrm{CN}$ requires C , 59.2 ; $\mathrm{H}, 5.4 ; \mathrm{Cl}, 8.0 ; \mathrm{N}, 9.4 ; \mathrm{S}, 7.2 \%)$; $\lambda_{\text {max }} 224,279 \mathrm{sh}, 284$, and $297 \mathrm{sh} \mathrm{nm}\left(\varepsilon 26000,16000,16400\right.$, and 12800); $\nu_{\text {max }}$ 1565 and $3840 \mathrm{br} \mathrm{cm}^{-1}$; $\tau 2.0(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.2-3.1$ $(6 \mathrm{H}, \mathrm{m}), 5.2-5.6 \mathrm{br}(\mathrm{lH}), 6.45(3 \mathrm{H}, \mathrm{s}), 7.7-8.6(9 \mathrm{H}, \mathrm{m}$, including OH , exchanged $\mathrm{D}_{2} \mathrm{O}$), and $8.0(\mathrm{~s}, \mathrm{MeCN}) ; m / e$ $404\left(M^{+}, 11 \%\right), 229(M-C b s, 100), 201(16), 159\left(\mathrm{C}_{10} \mathrm{H}_{11^{-}}\right.$ $\mathrm{N}_{2}, 21$), and 145 (43). Treatment of the alcohol with TsN_{3} in DMSO (room temperature, 4 weeks) gave 2^{\prime}-hydroxy-1-methyl-2-p-tolylsulphonyliminoindoline-3-spirocyclohexane (27; $Z=\mathrm{Ts}$) (40%) as prisms, m.p. $148-150^{\circ}$ (from MeCN) (Found: $\mathrm{C}, 65.6 ; \mathrm{H}, 5.9$; $\mathrm{N}, 7.5 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 65.5 ; \mathrm{H}, 6.3 ; \mathrm{N}, 7.3 \%)$; $\lambda_{\text {max. }} 221,278 \mathrm{sh}$, 283, and 300sh nm ($\varepsilon 23500,13700,14300$, and 10700); $\nu_{\text {max. }} 1575,2280 \mathrm{w}(\mathrm{MeCN})$, and $3440 \mathrm{br}(\mathrm{OH}) \mathrm{cm}^{-1}$; the presence of MeCN in the crystals after drying was supported by the signal at $\tau 8.0$ in the n.m.r. spectrum. The alcohol (27; $Z=C b s)$ was dissolved in trifluoroacetic acid. After 30 min the solution was evaporated to dryness and a little methanol added. The trifluoroacetate (53% yield) had m.p. $150-151^{\circ}$ (Found: C, 52.9; H, 4.1; F, 11.5. $\mathrm{C}_{22} \mathrm{H}_{20^{-}}$ $\mathrm{ClF}_{3} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 52.8 ; \mathrm{H}, 4.0 ; \mathrm{F}, 11.1 \%$); $\nu_{\text {max. }} 1790$ $\mathrm{cm}^{-1} ; \tau 2.05(2 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}), 2.2-3.1(6 \mathrm{H}, \mathrm{m}), 4.2(1 \mathrm{H}$, $\mathrm{t}, J 6.5 \mathrm{~Hz}), 6.4(3 \mathrm{H}, \mathrm{s})$, and $7.5-8.7(8 \mathrm{H}, \mathrm{m})$. The alcohol $(0.25 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was oxidized with the chromium pentaoxide-pyridine complex (30 ml)..23 After $12 \mathrm{~h} \mathrm{Et}_{2} \mathrm{O}$ $(200 \mathrm{ml})$ was added, the solution was filtered, and the solvent removed. Chromatography (SiO_{2}; benzene-EtOAc) yielded 2-p-chlorophenylsulphonylimino-1-methylindoline-3-spirocyclohexan- 2^{\prime}-one (40%), m.p. $194-195^{\circ}$ (Found: C, $58.9 ; \mathrm{H}, 5.0 ; \mathrm{Cl}, 8.8 ; \mathrm{N}, 7.0 . \quad \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{SO}_{3}$ requires $\mathrm{C}, 59.7 ; \mathrm{H}, 4.7 ; \mathrm{Cl}, 8.7 ; \mathrm{N}, 7.0)$; $\lambda_{\text {max. }} 225,287$, and 300 sh $\mathrm{nm}(\varepsilon 21500,18100$, and 12600$)$; $\nu_{\text {max. }} 1700 \mathrm{~cm}^{-1}$; $\tau 2.1(2$
$\mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}), 2.3-3.2(6 \mathrm{H}, \mathrm{m}), 6.7(3 \mathrm{H}, \mathrm{s}), 6.8-9.1(8 \mathrm{H}$, $\mathrm{m})$; $m / e 402\left(M^{+}, 6 \%\right), 227$ (M-Cbs, 100), 199 (26), 185 (227- $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}, 20$), and 172 (14).

2-p-Chlorophenylsulphonylimino-1-methylindoline-3-spirocyclohex-2'-ene (29; $Z=\mathrm{Cbs}$).-(a) A solution of the olefin (26; $\left.\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right)(0.5 \mathrm{~g})$ in dry DMSO (3 ml) containing $\mathrm{CbsN}_{3}(1.1 \mathrm{~g})$ was left for 8 weeks and then poured into water. The tar was washed by decantation and $\mathrm{MeCN}(5 \mathrm{ml})$ added. After 24 h at $0{ }^{\circ} \mathrm{C}$ the solid (0.45 g) was collected and recrystallised (MeCN, yield 0.21 g , two crops). A black polymeric residue was obtained; the yield was not improved by addition of an antioxidant.
(b) The alcohol (25; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) reacted with CbsN_{3} in DMSO- $\mathrm{Ac}_{2} \mathrm{O}(9: 1)$ giving a 10% yield of the olefin. The olefin (29; $\mathrm{Z}=\mathrm{Cbs}$) formed prisms, m.p. 192-194 (from EtOH) (Found: C, 61.9; H, 4.8; N, 7.4. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 62.1 ; \mathrm{H}, 4.9 ; \mathrm{N}, 7.2 \%$) ; $\lambda_{\text {max. }} 226,284 \mathrm{sh}, 288$, $297 \mathrm{sh} \mathrm{nm}\left(\varepsilon 30200,17400,18000\right.$, and 15200) ; $\nu_{\text {max. }}$. $1571 \mathrm{~cm}^{-1}$; $\tau 2.05(2 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}), 2.4-3.1(6 \mathrm{H}, \mathrm{m})$, $3.65-3.85\left[1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(3^{\prime}\right) \mathrm{H}\right], 5.00 \mathrm{br}[1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}$, $\left.\mathrm{C}\left(2^{\prime}\right) \mathrm{H}\right], 6.58(3 \mathrm{H}, \mathrm{s}), 6.8-7.2(1 \mathrm{H}, \mathrm{m}), 7.5-7.8(2 \mathrm{H}, \mathrm{m})$, $7.9-8.2(2 \mathrm{H}, \mathrm{m})$, and $8.3-8.7(1 \mathrm{H}, \mathrm{m}) ; m / e 386\left(M^{+}\right.$, $15 \%), 211\left(M-\right.$ Cbs, 100, $\left.m^{*} 115.3\right), 183\left(211-\mathrm{C}_{2} \mathrm{H}_{4}\right.$, 51), 170 (23), and 146 (15). This compound did not react further with CbsN_{3} to form (45). The olefin (0.225 g) was oxidised [perbenzoic acid (0.116 g), CHCl_{3}]. The usual work-up gave 2-p-chlorophenylsulphonylimino- $2^{\prime}, 3^{\prime}$-epory-1-methylindoline-3-spirocyclohexane (30) (70\%), m.p. 154$155^{\circ}$ (from MeOH) (Found: C, $59.6 ; \mathrm{H}, 4.8 ; \mathrm{N}, 6.7$. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 59.7 ; \mathrm{H}, 4.7 ; \mathrm{N}, 7.0 \%$); $\lambda_{\text {max. }}$. 205, 225, 280sh, 286, and 300sh nm ($\varepsilon 25100,25600$, $14500,16100$, and 13800$)$; $\nu_{\text {max. }} 1560 \mathrm{~cm}^{-1}$; $\tau 2.05(2 \mathrm{H}$, $d, J 9.0 \mathrm{~Hz}), 2.1-3.2(6 \mathrm{H}, \mathrm{m}), 6.5\left[1 \mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz}, \mathrm{C}\left(2^{\prime}\right) \mathrm{H}\right]$, $6.65(3 \mathrm{H}, \mathrm{s}), 7.2-7.65\left[1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(3^{\prime}\right) \mathrm{H}\right], 7.6-8.8(6 \mathrm{H}, \mathrm{m})$; $m / e 402\left(M^{+}, 25 \%\right), 386$ (10), 361 (60), 227 ($M-$ Cbs, 100), $199(45)$, and $173\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}, 100\right)$. Bromination of the olefin in chloroform (3 h) and chromatography of the product $\left(\mathrm{Al}_{2} \mathrm{O}_{3} ; \mathrm{CHCl}_{3}\right)$ gave the tribromo-compound (31) (64%), m.p. 201-203 ${ }^{\circ}$ (Found: C, 38.6; H, 2.9; H, 4.3. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Br}_{3} \mathrm{ClN}_{2} \mathrm{O}_{2}$ S requires C, $38.6 ; \mathrm{H}, 2.9 ; \mathrm{H}, 4.5 \%$); $\lambda_{\text {max. }} 225,287$, and 312 sh nm ($\varepsilon 26500,19500$, and 9900); $\nu_{\text {max. }} 1570 \mathrm{~cm}^{-1}$; $\tau 2.01(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.3-2.6(4 \mathrm{H}, \mathrm{m})$, $3.07(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}), 5.0\left[1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}, \mathrm{C}\left(2^{\prime}\right) \mathrm{H}\right], 5.3-$ $5.8\left[1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(3^{\prime}\right) \mathrm{H}\right], 6.25(3 \mathrm{H}, \mathrm{s})$, and $7.1-8.5(6 \mathrm{H}, \mathrm{m})$. Bromination of (32; $\mathrm{R}=\mathrm{H}$) afforded ($32 ; \mathrm{R}=\mathrm{Br}$) (80%) as needles, m.p. 220- $\mathbf{2 2 2}{ }^{\circ}$ (from MeCN) (Found: C, 53.3; $\mathrm{H}, 4.7$; $\mathrm{Br}, 19.4 ; \mathrm{N}, 7.0 . \quad \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, $53.2 ; \mathrm{H}, 4.7 ; \mathrm{Br}, 19.5 ; 6.9 \%$); $\lambda_{\text {max. }} 222,290$, and 300 sh $\mathrm{nm}\left(\varepsilon 40200,37300\right.$, and 26500) ; $\nu_{\max } 1550 \mathrm{~cm}^{-1}$. Alkaline hydrolysis afforded 5 -bromo-1,3,3-trimethyloxindole as needles, m.p. 104-107 (from light petroleum) (Found: C, $52.1 ; \mathrm{H}, 4.7$; $\mathrm{Br}, 31.6 ; \mathrm{N}, 5.4 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrNO}$ requires C , $52.0 ; \mathrm{H}, 4.7$; $\mathrm{Br}, 31.5 ; \mathrm{N}, 5.5 \%$); $v_{\text {max. }} 1710 \mathrm{~cm}^{-1}$. The olefin (26; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) was mixed with p-nitrobenzenesulphonyl azide in dry DMSO. After 8 weeks the solid was collected and recrystallised (MeCN) yielding 1-methyl-2-p-nitrophenylsulphonyliminoindoline-3-spirocyclohex-2'ene ($29 ; \mathrm{Z}=\mathrm{Nbs}$) as prisms (10%), m.p. 190° (Found: C , $60.5 ; \mathrm{H}, 5.0 ; \mathrm{N}, 10.6 ; \mathrm{S}, 7.8 . \quad \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires C , $60.5 ; \mathrm{H}, 4.8 ; \mathrm{N}, 10.6 ; \mathrm{S}, 8.0 \%$) ; $\lambda_{\text {max. }} 216,270 \mathrm{sh}, 280$, and 287sh nm ($\varepsilon 22100,16100,17900$, and 13400) ; $\nu_{\max }$. $1560 \mathrm{~cm}^{-1}$; $\tau 1.6-1.95(4 \mathrm{H}, \mathrm{m}, \mathrm{Nbs}), 2.6-3.2(4 \mathrm{H}, \mathrm{m})$, $3.6-4.0\left[1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(3^{\prime}\right) \mathrm{H}\right] 4.55\left[1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}, \mathrm{C}\left(2^{\prime}\right) \mathrm{H}\right]$, $6.6(3 \mathrm{H}, \mathrm{s}), 6.88-7.35\left[1 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(6^{\prime}\right) \mathrm{H}\right], 7.5-7.8[4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}\left(4^{\prime}\right) \mathrm{H}_{2}\right], 7.9-8.3\left[2 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(5^{\prime}\right) \mathrm{H}\right]$, and $8.43 \mathrm{br}[1 \mathrm{H}, \mathrm{d}$,
$\left.J 13 \mathrm{~Hz}, \mathrm{C}\left(6^{\prime}\right) \mathrm{H}\right]$; on irradiation (a) at $\tau 7.7$ the $\mathrm{C}\left(3^{\prime}\right) \mathrm{H}$ signal collapsed to a doublet, $J 12 \mathrm{~Hz},(b)$ at $\tau 7.12$ the $\mathrm{C}\left(6^{\prime}\right) \mathrm{H}$ signal at $\tau 8.43$ collapsed into a v.br, singlet, (c) at $\tau 8.43$ the $\mathrm{C}\left(6^{\prime}\right) \mathrm{H}$ signal at $6.9-7.3$ collapsed into a distorted triplet, $J 9.5 \mathrm{~Hz}$; the ${ }^{13} \mathrm{C}$ n.m.r. spectrum included signals from three CH_{2} groups (18.4, 23.6, and 29.8 p.p.m.,) C(3) (54.0), and $\mathrm{C}=\mathrm{N}(174.5)$, the $\mathrm{C}\left(2^{\prime}\right)$ and $\mathrm{C}\left(3^{\prime}\right)$ signals appearing amongst the Ar-C signals.

2'-p-Chlorophenylsulphonylaminomethylene-2-p-chloro-phenylsulphonylimino-1-methylindoline-3-spirocyclopentane (45; $\mathrm{R}=\mathrm{H}$).—The olefin (26; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) (0.5 g) and $\mathrm{CbsN}_{3}(1.1 \mathrm{~g})$ were mixed in $\mathrm{CCl}_{4}(2 \mathrm{ml})$. Four weeks later the solid was collected and recrystallised (MeOH). The imine ($45 ; \mathrm{R}=\mathrm{H}$) formed tiny needles, $0.29 \mathrm{~g}, \mathrm{~m} . \mathrm{p}$. 201° (Found: C, 54.2; H, 4.4; Cl, 12.2; N, 7.3; S, 10.8 . $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 54.2 ; \mathrm{H}, 4.0 ; \mathrm{Cl}, 12.3 ; \mathrm{N}$, $7.3 ; \mathrm{S}, 11.1 \%) ; \lambda_{\text {max. }} 226,275$, and $303 \mathrm{sh} \mathrm{nm}(\varepsilon 49000$, 20000 , and 14000); $\nu_{\text {max. }} 1560 \mathrm{br}(\mathrm{C}=\mathrm{N})$ and $3196(\mathrm{NH})$ $\mathrm{cm}^{-1} ; \tau 2.13(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.35(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.4-3.1$ $(8 \mathrm{H}, \mathrm{m}), 3.65\left(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}\right.$, exchanged with $\mathrm{D}_{2} \mathrm{O}$, NH), $4.25\left(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}\right.$, collapsed to s on $\mathrm{D}_{2} \mathrm{O}$ exchange, $\mathrm{CH}=\mathrm{C}), 6.55(3 \mathrm{H}, \mathrm{s})$, and $6.8-8.5(8 \mathrm{H}, \mathrm{m}) ; m / e 575\left(M^{+}\right.$, 4%), $400(M-$ Cbs, 100), $225(M-2 C b s, 85), 224(55)$, $209\left(M-\mathrm{Cbs}-\mathrm{CbsNH}_{2}, 68\right), 197\left(225-\mathrm{CH}_{2} \mathrm{~N}, 41\right)$, and $183\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3}, 16\right)$. The mother-liquor afforded the imine (35) (see later). Reaction of the olefin with TsN_{3} gave the corresponding tosyl compound $(45, \mathrm{R}=\mathrm{H}$, Ts replacing Cbs) as needles, m.p. 236-239 (from nitromethane) (Found: C, 62.7; H, 5.5; N, 7.4; S, 12.1. $\mathrm{C}_{28^{-}}$ $\mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 62.8 ; \mathrm{H}, 5.4$; $\mathrm{N}, 7.9$; $\mathrm{S}, 12.0 \%$); $\nu_{\text {max. }} 1575$ and $3198 \mathrm{~cm}^{-1}$; n.m.r. spectrum included signals at $\tau\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.57(1 \mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz}, \mathrm{NH})$ and $4.7(1$ $\mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz})$. Reaction of $\left(26 ; \mathrm{R}^{1}=\mathrm{D}, \mathrm{R}^{2}=\mathrm{H}\right)$ with CbsN_{3} in CCl_{4} yielded (45; $\mathrm{R}=\mathrm{H}$) (17%) and $\left(35 ; \mathrm{R}^{1}=\right.$ $\left.\mathrm{D}, \mathrm{R}^{2}=\mathrm{H}\right)(\mathbf{1 3} \%)$. From the reaction between (26; $\mathrm{R}^{2}=$ $\mathrm{D}, \mathrm{R}^{1}=\mathrm{H}$) and CbsN_{3} the deuteriated imine (45; $\mathrm{R}=\mathrm{D}$) (yield 19%) and the monodeuteriated compound (35; $\mathrm{R}^{1}=$ $\mathrm{D}, \mathrm{R}^{2}=\mathrm{H}$) were isolated [Found: for (45): C, 53.8; $\mathrm{H}+\mathrm{D}, 4.1 ; \mathrm{Cl}, 12.5 ; \mathrm{N}, 7.0 ; \mathrm{S}, 10.9 . \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{DCl}_{2}-$ $\mathrm{N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires C, 54.1; $\mathrm{H}+\mathrm{D}, 4.2 ; \mathrm{Cl}, 12.1 ; \mathrm{N}, 7.2$; $\mathrm{S}, 11.1 \%) ; \nu_{\text {max }} 1570$ and $3200 \mathrm{~cm}^{-1}$; the n.m.r. spectrum included $\tau\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $) 0.4(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ but no signal at $\tau 4.25(\mathrm{CH}=\mathrm{C})$; $m / e 576\left(M^{+}, 6 \%\right), 401$ (100), 226 (70), and 210 (58). We could not obtain crystals of (45) suitable for X-ray crystallographic determination and attempts at bromination, hydrolysis, oxidation, and reduction failed. A sample of the compound ($45 ; \mathrm{R}=\mathrm{H}$) (0.22 g) was dissolved in acetone (15 ml) containing $\mathrm{NaOH}(0.74 \mathrm{~g})$, water (3 ml), and dimethyl sulphate (1 ml). After 18 h stirring the acetone was removed in vacuo and water added. Extraction with benzene afforded an oil to which benzene-light petroleum ($1: 1,2 \mathrm{ml}$) was added. Next day the solid was collected ($0.1 \mathrm{~g}+0.04 \mathrm{~g}$ in mother-liquor). 2'-p-Chlorophenylsulphonylaminomethylene-NN'-dimethyl-2-oxoindole-3-spirocyclopentane (46) formed prisms, m.p. 145° (Found: C, 60.6; H, 5.3; N, 6.8; S, 7.7. $\mathrm{C}_{21} \mathrm{H}_{21}{ }^{-}$ $\mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 60.6; H, 5.1; $\mathrm{N}, 6.7 ; \mathrm{S}, 7.7 \%$); $\lambda_{\text {max. }} 210,230 \mathrm{sh}$, and $260 \mathrm{sh} \mathrm{nm}(\varepsilon 37800,20000$, and 11300); $v_{\max } 1700 \mathrm{~cm}^{-1}$; $\tau 2.55(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 2.6-3.0(5 \mathrm{H}, \mathrm{m})$, $3.2[1 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{C}(7) \mathrm{H}], 5.1(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.82(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe}), 7.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{NCbs}\right), 7.5-8.3(6 \mathrm{H}, \mathrm{m}) ; m / e$ (M not detected) $241(M-\mathrm{Cbs}, 100 \%$) and $210(M-$ CbsNMeH, 13).

The methanolic mother liquors from the preparation of (45) were concentrated to give 6-p-chlorophenylsulphonyl-
imino-5,6,7,8,9,10-hexahydro-5-methyl-cyclohept[b]indole (35; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) as pale yellow needles, m.p. 146 - 149° (from EtOH), (Found: C, 61.6; H, 5.0; N, 7.1. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 62.1 ; \mathrm{H}, 4.9$; $\mathrm{N}, 7.2 \%$); $\lambda_{\max }$ 201, 251, and 349 $\mathrm{nm}\left(\varepsilon 38800,13800\right.$, and 27000); $v_{\text {max }} 1556 \mathrm{~cm}^{-1}$; $\tau 2.02$ $(2 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}), 2.2-3.0(6 \mathrm{H}, \mathrm{m}), 6.2(3 \mathrm{H}, \mathrm{s}), 6.54[2 \mathrm{H}$, $\left.\mathrm{t}, J 6.6 \mathrm{~Hz}, \mathrm{C}(7) \mathrm{H}_{2}\right], 6.95\left[2 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}, \mathrm{C}(10) \mathrm{H}_{2}\right]$, and $7.7-8.5(4 \mathrm{H}, \mathrm{m}) ; m / e 386\left(M^{+}, 20 \%\right)$, 211 (100), 183 (11), and 169 (15). The isomeric compound (36) has ${ }^{13}$ m.p. 222°. Alkaline hydrolysis of the imine gave (24; $\mathrm{R}=\mathrm{H}$) (m.p., i.r.). The methanolic mother liquors from the reaction of both deuteriated olefins (26; $\mathrm{R}^{1}=\mathrm{D}, \mathrm{R}^{2}=\mathrm{H}$) and (26; $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{D}$) gave the same monodeuteriated imine, 7-[$\left.{ }^{2} \mathrm{H}\right]-6-\mathrm{p}$-chlorophenylsulphonylimino-5,6,7,8,9,10-hexa-hydro-5-methylcyclohept $[\mathrm{b}]$ indole $\quad\left(35 ; \quad \mathrm{R}^{1}=\mathrm{H}, \quad \mathrm{R}^{2}=\mathrm{D}\right)$ (Found: C, 62.1; H, 4.8; Cl, 9.2; N, 7.3; S, 8.0. $\mathrm{C}_{20}{ }^{-}$ $\mathrm{H}_{18} \mathrm{DClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 62.0 ; \mathrm{H}+\mathrm{D}, 5.2 ; \mathrm{Cl}, 9.0 ; \mathrm{N}$, 7.2 ; S, $8.3 \%)$; $\nu_{\text {max. }} 1550 \mathrm{~cm}^{-1}$; $\tau 2.05(2 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz})$, $2.2-3.0(3 \mathrm{H}, \mathrm{m}), 6.23(3 \mathrm{H}, \mathrm{s}), 6.57$ [$1 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}$, $\mathrm{C}(7) \mathrm{H}], 6.97\left[2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{C}(10) \mathrm{H}_{2}\right]$, and $7.8-8.4(4 \mathrm{H}$, $\mathrm{m})$; $m / e 387\left(M^{+}, 20 \%\right), 212(100)$, and $169(18)$.

Action of Periodic Acid on Tetrahydrocarbazole.-Oxidation of tetrahydrocarbazole in methanol at $0{ }^{\circ} \mathrm{C}$ followed by work-up after 30 min gave 3,4 -dihydrocarbazol-1(2H)one. ${ }^{18}$ The reaction mixture was left at room temperature overnight and then poured into water. Extraction $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ gave an oil which on trituration with ethanol and recrystallisation from acetic acid gave 3,4-dihydro-6-iodocarbazol$1(2 \mathrm{H})$-one $\left(47 ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{I}\right)(41 \%)$ as prisms, m.p. 213-216 ${ }^{\circ}$ (decomp.) (Found: C, 46.3; K, 3.3; I, 40.4; $\mathrm{N}, 4.4 \%$) ; $\lambda_{\text {max. }} 215,239,313$, and 346sh nm ($\varepsilon 29800$, 26200,27600 , and 4900); $\nu_{\text {max. }} 1643$ and $3270 \mathrm{~cm}^{-1}$; $\tau 0.39(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.02 \mathrm{br}(1 \mathrm{H}, \mathrm{s}), 2.42(1 \mathrm{H}, \mathrm{dd}, J 8,2$ Hz), and $2.77(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}), 7.07(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 7.34$ $(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz})$, and $7.6-7.9(2 \mathrm{H}, \mathrm{m}) ; m / e 311\left(M^{+}, 98 \%\right)$, 283 (45), 269 (29), 255 (100), and 128 (91).

Treatment of compound (47; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$) in MeOH with $\mathrm{I}_{2}+\mathrm{HIO}_{4}$ for 12 h gave ($47 ; \mathrm{R}^{1}=\mathrm{H}, \quad \mathrm{R}^{2}=\mathrm{I}$) (63\%). Cyclohexane-1,2-dione p-iodophenylhydrazone was prepared by coupling p-iodobenzenediazonium chloride (from p-iodoaniline, 18.8 g) with 2 -hydroxymethylenecyclohexanone. ${ }^{10}$ A small quantity of the crude product (yield 89%) was recrystallised (EtOH), to afford yellowbrown prisms (m.p. 181-183 ${ }^{\circ}$) (Found: C, 44.1; H, 3.9; $\mathrm{N}, 8.5$. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IN}_{2} \mathrm{O}$ requires $\mathrm{C}, 43.9 ; \mathrm{H}, 4.0 ; \mathrm{N}, 8.6 \%$); $\nu_{\text {max. }} 1600,1699$, and $3250 \mathrm{~cm}^{-1}$. Cyclisation of this compound in 80% formic acid afforded a dark tar. This was washed (decantation) with MeOH and recrystallised (HOAc) (yield (34%) affording 3,4-dihydro-6-iodocarbazol$1(2 H)$-one, identical (m.p., i.r., t.l.c.) with the sample obtained above. Methylation ($\mathrm{KOH}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{Me}_{2} \mathrm{SO}_{4}$) of both samples gave 3,4-dihydro-6-iodo-9-methylcarbazol$\mathrm{l}(2 \mathrm{H})$-one (47; $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=1$) as needles, m.p. 134-
136° (from light petroleum-benzene) (Found: C, 48.5; $\mathrm{H}, 3.7$; $\mathrm{N}, 4.3$. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{INO}$ requires $\mathrm{C}, 48.0 ; \mathrm{H}, 3.7 ; \mathrm{N}$, 4.3%) ; $\nu_{\text {max. }} 1667 \mathrm{~cm}^{-1}$.

The authors wish to thank Lady Richards for her valuable assistance in the determination and interpretation of the n.m.r. data.
[8/781 Received, 27th April, 1978]

REFERENCES

${ }^{1}$ A. S. Bailey, C. J. Barnes, and P. A. Wilkinson, J.C.S. Perkin I, 1974, 1321.
${ }^{2}$ A. S. Bailey, C. M. Birch, D. lllingworth, and J. C. Willmott, J.C.S. Perkin I, 1978, 1471.
${ }_{3}$ A. S. Bailey, R. Scattergood, and W. A. Warr, J. Chem. Soc. (C) 1971, 2479 .
${ }^{4}$ J. Thesing and G. Semler, Annalen, 1964, 680, 52.
${ }_{5}^{5}$ S. V. Tsukerman, V. D. Orlov, A. T. Yatsenko, and V. F. Lavrushin, Theor. and Exp. Chem., 1970, 6, 58; R. E. Lutz and L. T. Slade, J. Org. Chem., 1961, 26, 4888.
${ }^{6}$ A. S. Bailey, A. J. Buckley, and W. A. Warr, J.C.S. Perkin I, 1972, 1626.
${ }^{7}$ A. S. Bailcy, R. Scattergood, and W. A. Warr, J. Chem. Soc. (C), 1971, 3769.
${ }^{8}$ A. S. Bailey and J. F. Seager, J.C.S. Perkin I, 1974, 763.
${ }^{9}$ A. S. Bailey, A. J. Buckley, and J. F. Seager, J.C.S. Perkin I, 1973, 1809.
${ }^{10}$ J. Elks, D. F. Elliott, and B. A. Hems, J. Chem. Soc., 1944, 624; T. Shioiri, K. Ishizumi, and S. Yamada, Chem. Pharm. Bull. (Japan), 1967, 15, 1010.
${ }_{11}$ T. S. Cameron, K. Prout, B. Denton, R. Spagna, and E. White, J.C.S. Perkin II, 1975, 176; S. R. Critchley, K. Prout, D. Watkin, A. S. Bailey, and J. M. Peach, J.C.S. Perkin II, 1977, 1335.
${ }_{12}$ ' The Chemistry of Indoles. Part 1' ed. W. J. Houlihan, Wiley-Interscience, New York, 1972, p. 76.
${ }_{13}$ A. S. Bailey and P. A. Wilkinson, J.C.S. Pcrkin I, 1976, 481; G. A. Bahadur, A. S. Bailey, and P. A. Baldry, ibid., 1977, 1619.

14 'Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry. 2nd edn.,' L. M. Jackman and S. Sternhell, Pergamon, Oxford, 1969, p. 316.
${ }^{15} \mathrm{H}$. Ahlbrecht and G. Rauchschwalbe, Tetrahedron Letters, 1971, 4897 (and personal communication); J. P. Chupp, J. Org. Chem., 1970, 35, 2441; H. Quast and A. Heublein, Chem. Ber., 1973, 108, 2574; B. de Jeso and J. C. Pommier, J.C.S, Chem. Comm., 1977, 565.
${ }^{16}$ J. E. McMurry and A. P. Coppolino, J. Org. Chem., 1973, 38, 2821 ; H. O. House, E. J. Grubbs, and W. F. Gannon, J. Amer. Chem. Soc., 1960, 82, 4099.
${ }_{17}^{17}$ M. Sims, Part II 'Thesis, Oxford University, 1978.
${ }^{18}$ L. J. Dolby and D. L. Booth, J. Amer. Chem. Soc., 1966 88, 1049.
${ }^{19}$ A. H. Jackson, B. Naidoo, and P. Smith, Tetrahedron, 1968, 24, 6119.
${ }_{20}$ A. S. Bailey, T. Morris, and Z. Rashid, J.C.S. Perkin I, 1975, 420.
${ }^{21}$ L. M. Jackman and S. Sternhill, 'Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry,'
Pergamon, London, 1969, 2nd edn., p. 184.
${ }_{22}$ P. N. James and H. R. Snyden, Org. Synth., Coll. Vol. 4, p. 539.
${ }^{23}$ G. W. J. Fleet and W. Little, Tctrahedron Letters, 1977, 3749.

